skip to main content


Search for: All records

Creators/Authors contains: "Wilson, Rachel M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often quantified as a Q10value) is derived from laboratory incubation studies and then used in biogeochemical models. However, studies report wide variation in incubation-inferred Q10values, with a large portion of this variation remaining unexplained. Here we applied observations in a thawing permafrost peatland (Stordalen Mire) and a well-tested process-rich model (ecosys) to interpret incubation observations and investigate controls on inferred CH4production temperature sensitivity. We developed a field-storage-incubation modeling approach to mimic the full incubation sequence, including field sampling at a particular time in the growing season, refrigerated storage, and laboratory incubation, followed by model evaluation. We found that CH4production rates during incubation are regulated by substrate availability and active microbial biomass of key microbial functional groups, which are affected by soil storage duration and temperature. Seasonal variation in substrate availability and active microbial biomass of key microbial functional groups led to strong time-of-sampling impacts on CH4production. CH4production is higher with less perturbation post-sampling, i.e. shorter storage duration and lower storage temperature. We found a wide range of inferred Q10values (1.2–3.5), which we attribute to incubation temperatures, incubation duration, storage duration, and sampling time. We also show that Q10values of CH4production are controlled by interacting biological, biochemical, and physical processes, which cause the inferred Q10values to differ substantially from those of the component processes. Terrestrial ecosystem models that use a constant Q10value to represent temperature responses may therefore predict biased soil carbon cycling under future climate scenarios.

     
    more » « less
  2. Riaz, Muhammad (Ed.)
    The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum -rich peatlands (“bogs”) are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone (“PVP”), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO 2 and CH 4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO 2 production was significantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found to be more substantial with regards to methane production—wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs’ extraordinary recalcitrance and high (relative to other peatland habitats) CO 2 :CH 4 production ratios. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.

     
    more » « less
  5. Abstract

    Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post‐thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post‐thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2and CH4 fluxes from decomposition. Thus, the increased C‐storage expected from higher productivity was limited and the high global warming potential of CH4contributed a net positive warming effect. Although post‐thaw peatlands are currently C sinks due to high NPP offsetting high CO2release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.

     
    more » « less